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·Special Lectures·

Neuropathic pain is a chronic pain condition that
occurs after nerve damage, such as that induced by
bone compression in cancer, diabetes, infection,
autoimmune disease, or physical injury ［1］. Neuropathic
pain can manifest as spontaneous pain, allodynia (pain
evoked by a normally innocuous stimulus), and
hyperalgesia (enhanced pain evoked by a noxious
stimulus). Particularly, tactile allodynia is a cardinal
symptom of neuropathic pain ［2］. Recent studies
estimated that more than 1.5 billion people worldwide
suffer from chronic pain, and that approximately
3%-4.5% of the global populations are afflicted with
neuropathic pain, resulting in concerted efforts by the
scientific community to tackle this health problem ［ ３］.
Development of effective therapeutic strategies requires
a better understanding of molecular and cellular
mechanisms underlying the pathogenesis of
neuropathic pain. Cytokine is one of the major
components involved in the neuropathic pain
processing. This review will briefly describe the key
role of interleukin ⁃ 1beta (IL ⁃ 1 β) in the peripheral and
central brain activation during the neuropathic pain.

IL ⁃ 1 α and 1 β are prototypic proinflammatory
cytokines that exert pleiotropic effects on a variety of
cells and play key roles in acute and chronic

inflammatory and autoimmune disorders. There are
two IL ⁃1 receptors: IL ⁃1 receptor type 1 (IL ⁃1RⅠ) and
IL ⁃1 receptor type 2 (IL ⁃1RⅡ). IL ⁃1α and IL ⁃1β signal
through IL ⁃1RⅠ. Binding to IL ⁃1RⅡ does not lead to
cell signaling and it is therefore considered a decoy
receptor. Once IL ⁃1 binds with IL ⁃1 receptor, a second
receptor termed IL ⁃ 1 receptor accessory protein (IL ⁃
1RAcP) gets recruited at the cell membrane to form a
high affinity binding receptor complex leading to
intracellular signaling. A third IL⁃1 family member, IL⁃
1 receptor antagonist (IL ⁃ 1ra), binds to IL ⁃ 1 receptors
and prevents the interaction of IL ⁃ 1 with its receptors,
acting as a natural IL⁃1 inhibitor［4 ⁃5］. In this review, we
will focus on the IL ⁃1β activation in the peripheral and
central nervous system during the neuropathic pain.

Several animal models have been used to investigate
the neuropathic pain mechanisms. These models
include chronic constriction injury (CCI) of sciatic
nerve［6］, transection of the sciatic nerve［7］, partial sciatic
nerve ligation (PSNL) ［8］, spinal nerve ligation (SNL) ［9］,
spared nerve injury (SNI) ［10］, chronic compression of
the dorsal (CCD) root ganglion ［11］ and chronic
constriction injury of infraorbital nerve (CCI ⁃ ION) ［12］.
Neuropathic pain is also induced by infection,
inflammation, or demyelination of the sciatic nerve ［13］,
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Abstract
Interleukin-1beta (IL-1β), a pro-inflammatory cytokine, has been implicated
in the development of peripheral and central sensitization that is
charactistic of neuropathic pain. Recent studies demonstrated that IL-1β is
an important messenger that is interacted with glia and neurons in the
central neurous system in the neuropathic pain states. Some new studies
showed that IL-1β activation was regulated by several other cytokines such
as CCL2, MMP-2 and MMP-9 during the neuropathic pain conditions. This
review will briefly describe the key role of IL-1 β and its signaling
contributes to the peripheral and central nervous system in the neuropathic
pain.

【摘要】 炎性因子白细胞介素⁃1β（IL⁃1β）参与神经病理性疼痛的中枢和周

围敏化过程，此为其特征性病理变化。IL⁃1β是介导中枢神经系统胶质细胞与神

经元相互作用的重要炎性因子，其活化受到其他炎性因子的调控，如趋化细胞因

子配体 2（CCL2）和基质金属蛋白酶 2、9（MMP⁃2、9）等。本文简要概述 IL⁃1β在中

枢性和周围性神经病理性疼痛中的主要作用机制。
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as well as by chemotherapy (e.g., paclitaxel) ［14］ and
toxin [(e.g., 2'-3' dideoxycytidine (ddC)]［15］.

IL ⁃ 1 β activation has been shown in the peripheral
damaged nerves, dorsal root ganglion and spinal cord.
Immunohistology showed that the expression of IL ⁃ 1 β
immunoactivity was increased after nerve lesion ［16］.
Using the sciatic nerve injury model, the IL ⁃1β mRNA
of sciatic nerve after injury was significantly
upregulated ［17］. IL ⁃ 1 β expression increased in the
spinal cord following peripheral nerve injuries ［18］.
Immediately after peripheral nerve injury, Schwann
cells were activated and macrophages were recruited to
the injury site, both secreting IL ⁃ 1 β ［19］. In the CCI
model in mice, sciatic nerve epineural injections of IL ⁃
1R Ⅰ neutralizing antibodies were shown to reduce
both thermal hyperalgesia and mechanical allodynia,
suggesting a role for the upregulated IL ⁃ 1 β in the
induction of neuropathic pain ［20 ⁃ 21］. Lysophosphatidic
acid (LPA) had been demonstrated as an important
initiator for the neuropathic pain. Intrathecal LPA
injection increased the expression of IL ⁃ 1 β mRNA in
the spinal cord dorsal horn, and IL ⁃ 1 β neutralizing
antibody reversed LPA-induced neuropathic pain ⁃ like
behavior［22］.

Some evidence showed that IL ⁃1β is involved in the
modulation of nociceptive information in the brain
regions［23］. IL ⁃1β is also over ⁃expressed at supraspinal
brain regions, particularly in the contralateral side of
the hippocampus and prefrontal cortex and in the
brainstem, in rat models with neuropathic pain ⁃ like
behavior ［24］. After CCI of the rat infraorbital nerve in
the rostral ventromedial medulla (RVM), a major
component of brainstem descending pain modulatory
circuitry were prolonged elevations of cytokines
including tumor necrosis factor⁃α (TNF⁃α) and IL⁃1β［12］.

Glia plays an active role in regulation of synaptic
transmission in the central nervous system (CNS) ［25 ⁃ 27］.
After hyperactivation, glia subsequently releases
cytokines at the spinal cord ［28 ⁃ 32］ and spinal trigeminal
nucleus ［33 ⁃ 34］, which may be implicated in central
mechanisms of persistent pain ［35］. Increasing of IL ⁃ 1 β
protein expression depends on glia activation in the
rats of CCI model. The IL⁃1 receptor which localizes in
neuron is also increased after infraorbital nerve ligation
in rats. Blocking of the glia activation leads to the
effect of N ⁃ methyl ⁃ D ⁃ aspartate (NMDA)
phosphorylation ［12］. IL ⁃ 1 β also directly sensitizes the
nociceptors, such as the transient receptor potential
cation channel subfamily Ⅴ member 1 (TRP Ⅴ 1), a heat
and chemical-sensitive cation channel in primary
afferent neurons［36］.

Recently, there have been several lines of evidence
demonstrating that inflammatory chemokines play
pivotal roles in the pathogenesis of both classical
inflammatory diseases and intractable neuropathic
pain. IL ⁃ 1 β, a potent inducer of neuronal CCL2, was
also selectively upregulated in RVM reactive astrocytes.

Injection of IL ⁃ 1 β (120 fmol) into the RVM induced
behavioral hyperalgesia, which was blocked by RS ⁃
102895 (10 pmol), a CCR2B chemokine receptor
antagonist. However, an IL ⁃ 1 receptor antagonist (3
pmol) did not prevent CCL2 (3 pmol) ⁃ induced
hyperalgesia. These results suggest that the effect of
CCL2 is downstream to IL ⁃ 1 β signaling ［37］. Toll ⁃ like
receptor 4 (TLR4) expression was associated with both
paw withdrawal threshold toward mechanical stimulus
and paw withdrawal latency toward thermal stimulus.
The protein levels of TNF ⁃ α and IL ⁃ 1 β, two
downstream proinflammatory cytokines of TLR4
signaling pathway, were also significantly raised and
correlated with mechanical/thermal hypersensitivity in
diabetic rats［38］. The analgesic effect of siRNA ⁃NFκBp65
might be mediated, at least partly, through the
prevention of TNF ⁃α, IL ⁃ 1 β and IL ⁃ 6 products in the
CCI model of rats ［39］. The new mechanisms of
neuropathic pain have been revealed involving a
complex pathway with matrix metallo proteinase
(MMP) ⁃9, 2, and IL ⁃1β. Kawasaki et al［40］ showed that
the CCI model cleavage of IL ⁃ 1 β by MMPs subtypes
contributed to different phases of neuropathic pain
behavior. After nerve injury, MMP ⁃ 9 induced
neuropathic pain through IL⁃1β cleavage and microglial
activation at early phase, but MMP ⁃ 2 maintained
neuropathic pain through IL-1 β cleavage and astrocyte
activation at later phase. Therefore, the subsequential
activation of microglia followed by activation of
astrocytes in the spinal cord during neuropathic pain
has been previously documented ［19］. Additionally, IL ⁃ 1
β was shown to activate MMPs, suggesting a circular
regulation between MMPs and IL⁃1β［40］.

In summary, many recent studies show that IL⁃1β is
not only involved in the inflammatory induced
hypersensitivity, but it also contributes to the nerve
injury induced neuropathic pain. The involvement of
IL ⁃ 1 β is in both the peripheral and central nervous
system in the neuropathic pain conditions. IL ⁃ 1 β
signaling depends on glia activation circular and
modulated by the chemokines activation. The releasing
of IL ⁃ 1 β bands to its receptor on neuron leads to
synaptic activity and pain transmission contributes to
the development of the persistent of neuropathic pain.
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