·中枢神经系统疾病磁共振成像研究·

重症抑郁障碍的结构性磁共振影像学研究进展

吴杞柱 杨勋 龚启勇

【关键词】 抑郁症; 磁共振成像; 综述文献 DOI:10.3969/j.issn.1672-6731.2011.03.007

重症抑郁障碍(MDD)是一种以持续情感低落、 思维迟缓、意志减退为主要临床特征的精神障碍, 通常伴有认知功能障碍和躯体症状。1980年,美国 精神障碍诊断与统计手册第3版(DSM-Ⅲ)开始采 用"major depressive disorder"作为临床抑郁症的正 规命名,以描述该症候群作为一种情感障碍的主要 特征;而通用名词"depression"也兼指其他心理性抑 郁障碍。重症抑郁障碍在所有精神障碍中的患病 率最高,通常在青壮年发病,多为慢性迁延病程,易 复发,且自杀率高达15%^[1],给患者个人、家庭及整 个社会造成沉重负担。目前在世界范围内对重症 抑郁障碍病因和发病机制的认识尚不充分,患者头 部常规影像学检查通常表现正常,传统上被认为仅 是引起行为改变的功能异常,即所谓的"非器质性" 病变。因此,临床诊断很大程度上仍依赖于患者自 述和精神科医师的主观经验和推测,缺乏客观的诊 断依据。但近年来,以MRI为代表的神经影像学技 术快速发展^[2],广泛应用于各类精神疾病的研究,也 逐渐揭示出重症抑郁障碍患者脑功能异常的模式 及其解剖与病理学基础。按照所提供的影像学信 息分类,MRI大致可以分为结构性和功能性两种类 型,Smith等^[3]曾对此有较好的定义:结构性影像学 技术反映局部脑组织的生物物理学性质,而功能性 技术则反映随时间变化的神经活动情况。在此我 们采用这一定义,认为在临床上经常被称为功能性 技术的扩散张量成像(DTI)、磁化传递成像(MTI)、 磁共振波谱(MRS)等实际上反映了局部脑组织的微

作者单位:610041 成都,四川大学华西医院放射科/华西磁共振 研究中心

通信作者:龚启勇(Email:qygong05@126.com)

观结构性病理信息,可以形成不同对比度的图像 (图1),因此将其统称为结构性影像学检查技术,并 据此阐述重症抑郁障碍的结构性影像学研究进展。

一、基于结构性影像学的脑形态学研究

一般意义上的结构性影像学研究,即指依据分 辨力和对比度较好的解剖图像,测量脑组织体积和 形态改变。对早期重症抑郁障碍脑结构的研究多 采用手动设置兴趣区(ROI)的方法测量局部脑结构 体积^[4],近期研究多采用基于体素的形态学分析 (VBM),通过比较成组受试者高分辨力T₁WI结构性 影像,一次性获取全脑组织密度或者体积改变的信 息^[4]。通常前扣带回、额颞叶皮质、海马,以及杏仁 核等部位是观察的重点区域。

前扣带回,特别是膝下的扣带回亚区是抑郁症 研究中的关键位点。大量功能性影像学研究报道, 抑郁症患者该区域功能活动异常[5-6],但有关其体积 变化的报道结论却并不统一[7-8]。额叶体积改变主 要见于症状严重的重症抑郁障碍患者,主要表现为 眶额皮质体积减小,而且左侧和内侧眶额皮质分别 受不同临床因素的影响^[4]。左侧颞叶体积减小见于 长期复发抑郁症的患者,病程较短的患者没有这种 改变^[9]。对颞叶亚区的分析发现,只有反复发作的 长期患者存在颞上回体积减小,并与病程或复发次 数呈反比[10-11];尚未见双侧颞叶总体积改变的文献 报道。对重症抑郁障碍患者海马结构的研究以体 积减小为主,但也有部分研究显示其体积不变甚至 呈增加趋势^[4]。对此可能的解释是,与抑郁症直接 相关的部位并非海马整体而是其某些亚区的形态 改变[12]。患者病程和复发次数等因素常与海马体 积呈负相关,但存在性别差异。重症抑郁障碍患者 杏仁核体积主要与病程阶段相关,随着病程的进展 杏仁核体积先增加而后减小,而且这种趋势女性患 者比男性患者更为明显[13-15]。关于抑郁症基底节形

基金项目:国家自然科学基金重点资助项目(项目编号: 81030027);国家自然科学基金青年科学基金资助项目(项目编号: 30900362)

态改变的文献报道较少,而且受试者纳入标准差异 亦较大。虽然有研究显示,经过电休克治疗后的难 治性重症抑郁障碍患者^[11]和病程较长患者^[16]基底 核团体积减小。但这些研究均未能很好地控制各 种影响因素,难以得出确凿的结论。

总体上讲,到目前为止的研究基本支持长病程 和较为严重的重症抑郁障碍患者边缘系统和额颞 叶皮质存在形态异常。这些脑区体积的改变与神 经生物学的抑郁症病理模型一致,即负责情感控制 与体验的边缘系统和皮质区域功能失调,涉及一个 进行情感调节的背侧网络(如前额叶背侧的一些亚 区)和一个进行情感体验的腹侧网络(如海马、杏仁 核、膝下扣带、眶额皮质和基底节)。重症抑郁障碍 的核心生化特征是下丘脑-垂体-肾上腺轴(HPA轴) 过度激活,引起肾上腺皮质醇增多。而海马、前额 叶、内侧眶额、前扣带回和杏仁核均属于糖皮质激 素受体分布较多的区域,其神经元缺失与肾上腺皮 质醇增多有关。应激或压力导致的神经毒理学机 制(HPA轴活性改变),最终会导致持续时间较长的 抑郁症患者局部脑体积改变。尽管如此,目前的脑 区形态学研究所提供的信息仍然较为粗略,如HPA 轴功能亢进和脑体积改变孰先孰后,药物如何调节 重症抑郁障碍患者脑区结构和神经生物学变化,性 别、病程进展、家族史产生何种影响等问题,虽然在 海马和杏仁核的研究中有所涉及,但需要更多的纵 向研究加以证实^[4]。

二、DTI和MTI研究

DTI 和 基 于 DTI 的 纤 维 束 追 踪 成 像 (tractography),主要用于观察脑白质纤维束走行,评 价其结构完整性,是目前无创性重建脑白质纤维束 三维构象的唯一方法。MTI反映因局部脑区生物大

分子浓度改变引起的信号改变。这两项检查技术 都对脑组织的微观结构性改变较为灵敏,提供的病 理信息具有互补性,近年才逐渐应用于重症抑郁障 碍的研究。由于目前关于重症抑郁障碍的MTI研究 极少,故与DTI合并概述。

DTI研究大多关注老年期晚发性重症抑郁障碍 患者。一是由于图像分析方法不统一,可采用兴趣 区法、纤维束追踪成像、基于体素的分析(VBA)等; 二是由于老年抑郁症患者共病情况十分普遍[17],造 成目前研究结果具有较大的差异性。例如部分研 究发现,老年重症抑郁障碍患者前额叶和前扣带回 邻近部位属于皮质-纹状体环路的白质出现部分各 向异性(FA)值降低^[18-19],而额叶白质FA值降低出 现在右侧[19-21]抑或是双侧[22-25],均有文献报道。除 了额叶白质,文献报道较为集中的是颞叶白质FA 值下降[21,24-26],但也同样存在偏侧性不一致的问 题。其他区域,如顶叶、枕叶、壳核、尾状核、内囊及 上纵束等区域的FA值降低也有少量报道^[20-21,27]。 鉴于此, Sexton 等^[28]曾对相关心境障碍患者的 DTI 研究进行系统评价,总结出重症抑郁障碍患者额 叶、颞叶及相应纤维束的FA值降低,而且白质纤维 束病变可能是心境障碍的致病因素之一。他们认 为,这可能与前额叶皮质下环路(frontal-subcortical circuits)参与运动、认知、动机和执行能力有关,白质 纤维束是这些网络连接的重要组成成分,其病变可 能造成额叶和皮质下区域间的"失连合综合征 (disconnection syndrome)"^[28]。

少数关于MTI的研究主要关注老年期抑郁症。 Wyckoff等^[29]发现,老年重症抑郁障碍患者额叶白 质磁化转移率(MTR)值与MRS反映的肌醇、N-乙酰 天冬氨酸(NAA)等代谢物质存在统计学相关性。

Kumar 等^[30]报告,重症抑郁障碍患者胼胝体膝部和 压部、右侧尾状核、壳核及枕叶白质MTR值下降。 Gunning-Dixon等^[31]发现,老年重症抑郁障碍患者左 侧半球额叶-纹状体和边缘系统广泛分布的脑区 MTR 值降低。最近,我与我的研究小组采用 VBM 法 和MTR值两种检测技术进行了一项对比研究^[32],结 果显示,中青年难治性抑郁症患者与相匹配的对照 组受试者相比,难治性抑郁症患者在VBM 中无任何 脑灰质和白质体积和密度变化时,其右侧半球前扣 带回、岛叶、尾状核和杏仁核-海马旁回 MTR 值降 低;进一步分析显示,颞下回 MTR 值与症状程度呈 负相关, 左侧额叶白质 MTR 值与病程呈负相关。这 些发现表明,MTI能敏感地发现无确切脑形态学异 常的重症抑郁障碍患者的脑微观神经病理学变化, 为重症抑郁障碍神经元连接异常提供生物学基础, 并为DTI研究所提示的白质纤维束完整性改变提供 了补充信息,进一步支持抑郁症皮质-边缘系统-纹 状体-苍白球-丘脑环路异常的神经解剖学观点。

三、MRS研究

近年关于重症抑郁障碍的系统评价表明,重症 抑郁障碍的共同生化改变表现为^[33]:(1)NAA水平 无变化。(2)基底节胆碱/肌酸(Cho/Cr)比值增加,一 般假设肌酸水平是稳定的,Cho/Cr比值增高即可以 解释为胆碱水平升高,其生物学含义为生物膜代谢 的加速。(3)谷氨酰胺复合物(Glx)水平降低,提示谷 氨酸能递质系统的功能障碍。总结以前的研究,仍 存在以下问题:第一,同一种代谢物在同一解剖部 位的改变存在相互矛盾的报道。以重症抑郁障碍 患者前额叶的胆碱水平变化为例,Cho/Cr比值显著 增加^[34]、显著降低^[35],抑或无任何改变^[36]均有报 道。第二,同一种代谢物在不同解剖部位的改变也 有不同的报道。仍以胆碱水平变化为例, Vythilingam 等^[37]报告右侧壳核 Cho/Cr 比值显著增 加;而Kusumakar等^[38]则报告左侧杏仁核Cho/Cr比 值显著低于正常对照者。对报道胆碱绝对水平变 化的研究进行比较,各解剖部位间的差异仍然存 在,例如左侧尾状核胆碱绝对水平显著升高^[39],前 额叶背外侧皮质胆碱绝对水平降低^[40],而前额叶胆 碱水平则无显著变化^[34,41]。排除研究方法本身可能 造成的影响后,不同解剖部位之间的不一致性所反 映的生理病理学意义需要阐释。今后开展抑郁症 的 MRS 研究大致需沿如下方向:(1) 尽量采用高场 强成像仪(3.0T及以上),以提高信噪比。(2)借助 LCModel等后处理软件对原始波谱数据进行标准化 处理,进行代谢物绝对水平的定量分析。(3)重视低 水平代谢物的检测,例如Glx和γ-氨基丁酸(GABA) 等代谢物不仅脑组织中水平较低(如GABA 仅为1~ 2 mmol/kg)^[42],而且与其他代谢物的共振谱峰之间 存在重叠,检测和定量均十分困难;但作为中枢神 经系统重要的神经递质,Glx和GABA的异常改变在 抑郁症的发生中具有重要作用。(4)对较小脑结构 的波谱分析,例如海马、杏仁核这些关键脑结构,目 前报道较少,但因其功能上的重要性[43],很有研究 的必要。

四、临床诊断与预测应用

以上重症抑郁障碍的结构性影像学研究一般 都采用某种特定模态的影像学技术,鉴定了一系列 与疾病症状和治疗效果相关的特征性影像学改变 部位(图2),对临床工作有一定借鉴意义。目前仍 然面临的困难,是如何解决将大样本量研究所得到 的结果推广到个体的临床决策这一瓶颈问题。最 近,基于机器学习理论的模式识别技术被较多地用 来尝试解决这一问题。针对临床抑郁症的治疗效 果问题,有研究采用患者治疗前的脑结构图像建立

· 290 ·

预测模型,对患者治疗效果的预测准确度达 88.90%,但作为鉴别诊断标志物的准确度仅有 67.60%^[44]。我与我的研究小组对此亦进行了深入 的探讨,我们将重症抑郁障碍患者根据治疗效果分 为配对的难治性与非难治性两组,发现灰质和白质 结构均对治疗效果有较好的预测效力,诊断准确度 均高于 67%^[45]。尽管建立全面、具有临床实用价值 的影像学模型尚需大量的实验数据积累和计算方 法的改进,但这些研究无疑将为精神疾病的影像学 研究推广至临床实践作出了有益的探索。

五、局限与展望

以上介绍的重症抑郁障碍结构性影像学研究 提供了大量神经病理学信息,极大地深化了对疾病 本质的理解。但通过以上分析,也发现了当前研究 的一些不尽完善之处,同时也是该领域进一步发展 的方向。首先,采用同一种影像学技术的不同研究 结果时有差异,这可能涉及影像学技术本身的优化 程度、技术参数和分析方法选择等问题;同时亦与 不同受试者入组标准有关;对此应进一步优化和开 发研究技术,提取可重复性更高、生理病理学意义 更加直观的影像学指标,同时尽可能地开展大样本 量的研究,增加统计效能。其次,当前仍鲜见对同 一组群受试者结合多种模态信息的综合研究。但 抑郁症的神经病理学涵盖从分子和细胞微观结构 到宏观组织形态、从血流代偿到脑网络功能等不同 层面,在需要对疾病进行细分的情况下,单模式影 像学指标往往由于信息的片面性,以及由此造成的 影像学信息与研究目标的适用性问题,未必能够取 得令人满意的效果,难以直接推广至个体的临床决 策。建立比较全面的疾病机制和诊断治疗影像学 表征模型,需要进一步发挥神经影像学多模态的优 势,进行多模态影像数据的融合和信息的整合。最 后,抑郁症的临床表现多种多样,诊断和分类有一 定困难,各种病例对治疗的反应不尽一致,甚至有 "抑郁综合征"的提法出现。目前的影像学研究主 要针对重症抑郁障碍或老年期抑郁症,整体分组不 够细化,下一步的研究应针对临床面临的问题开展 工作,细化研究目标,如重点研究针对抑郁症中的 难治性问题、自杀问题、与焦虑共病问题等。

参考文献

[1] Phillips MR, Zhang J, Shi Q, et al. Prevalence, treatment, and associated disability of mental disorders in four provinces in

China during 2001-05: an epidemiological survey. Lancet, 2009, 373:2041-2053.

- [2] 李坤成, 刘江涛. 神经影像学十年进展. 中国现代神经疾病杂志, 2010, 10:123-126.
- [3] Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 2004, 23 Suppl 1:208-219.
- [4] Lorenzetti V, Allen NB, Fornito A, et al. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord, 2009, 117(1/2):1-17.
- [5] Gotlib IH, Sivers H, Gabrieli JD, et al. Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. Neuroreport, 2005, 16:1731-1734.
- [6] Pizzagalli DA, Oakes TR, Fox AS, et al. Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol Psychiatr, 2004, 9:393-405.
- [7] Bremner JD, Vythilingam M, Vermetten E, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry, 2002, 51:273-279.
- [8] Drevets WC, Price JL, Simpson JR Jr, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 1997, 386:824-827.
- [9] Vythilingam M, Vermetten E, Anderson GM, et al. Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol Psychiatry, 2004, 56:101-112.
- [10] Caetano SC, Hatch JP, Brambilla P, et al. Anatomical MRI study of hippocampus and amygdala in patients with current and remitted major depression. Psychiatry Res, 2004, 132:141-147.
- [11] Shah PJ, Glabus MF, Goodwin GM, et al. Chronic, treatmentresistant depression and right fronto - striatal atrophy. Br J Psychiatry, 2002, 180:434-440.
- [12] Posener JA, Wang L, Price JL, et al. High-dimensional mapping of the hippocampus in depression. Am J Psychiatry, 2003, 160: 83-89.
- [13] Sheline YI, Gado MH, Price JL. Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport, 1998, 9:2023-2028.
- [14] Hastings RS, Parsey RV, Oquendo MA, et al. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology, 2004, 29:952-959.
- [15] Frodl T, Meisenzahl EM, Zetzsche T, et al. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry, 2003, 53:338-344.
- [16] Lacerda AL, Nicoletti MA, Brambilla P, et al. Anatomical MRI study of basal ganglia in major depressive disorder. Psychiatry Res, 2003, 124:129-140.
- [17] 缪飞,吴志远. 阿尔茨海默病及血管性认知损害的神经影像学 研究进展. 中国现代神经疾病杂志, 2010, 10:307-310.
- [18] Alexopoulos GS, Kiosses DN, Choi SJ, et al. Frontal white matter microstructure and treatment response of late - life depression: a preliminary study. Am J Psychiatry, 2002, 159: 1929-1932.
- [19] Taylor W, MacFall JR, Payne ME, et al. Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. Am J Psychiatry, 2004, 161:1293-1296.
- [20] Ma N, Li L, Shu N, et al. White matter abnormalities in firstepisode, treatment - naive young adults with major depressive disorder. Am J Psychiatry, 2007, 164:823-826.
- [21] Yuan Y, Zhang Z, Bai F, et al. White matter integrity of the whole brain is disrupted in first - episode remitted geriatric

· 292 ·

depression. Neuroreport, 2007, 18:1845-1849.

- [22] Bae JN, MacFall JR, Krishnan KR, et al. Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol Psychiatry, 2006, 60:1356-1363.
- [23] Li L, Ma N, Li Z, et al. Prefrontal white matter abnormalities in young adult with major depressive disorder: a diffusion tensor imaging study. Brain Res, 2007, 1168:124-128.
- [24] Nobuhara K, Okugawa G, Minami T, et al. Effects of electroconvulsive therapy on frontal white matter in late - life depression: a diffusion tensor imaging study. Neuropsychobiology, 2004, 50:48-53.
- [25] Nobuhara K, Okugawa G, Sugimoto T, et al. Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study. J Neurol Neurosurg Psychiatry, 2006, 77:120-122.
- [26] Steele J, Bastin M, Wardlaw J, et al. Possible structural abnormality of the brainstem in unipolar depressive illness: a transcranial ultrasound and diffusion tensor magnetic resonance imaging study. J Neurol Neurosurg Psychiatry, 2005, 76:1510-1515.
- [27] Zou K, Huang X, Li T, et al. Alterations of white matter integrity in adults with major depressive disorder: a magnetic resonance imaging study. J Psychiatry Neurosci, 2008, 33:525-530.
- [28] Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry, 2009, 66:814-823.
- [29] Wyckoff N, Kumar A, Gupta RC, et al. Magnetization transfer imaging and magnetic resonance spectroscopy of normal appearing white matter in late - life major depression. J Magn Reson Imaging, 2003, 18:537-543.
- [30] Kumar A, Gupta RC, Albert Thomas M, et al. Biophysical changes in normal - appearing white matter and subcortical nuclei in late - life major depression detected using magnetization transfer. Psychiatry Res, 2004, 130:131-140.
- [31] Gunning Dixon FM, Hoptman MJ, Lim KO, et al. Macromolecular white matter abnormalities in geriatric depression: a magnetization transfer imaging study. Am J Geriatr Psychiatry, 2008, 16:255-262.
- [32] Zhang TJ, Wu QZ, Huang XQ, et al. Magnetization transfer imaging reveals the brain deficit in patients with treatment refractory depression. J Affect Disord, 2009, 117:157-161.
- [33] Yildiz Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res, 2006, 147:1-25.

- [34] Kumar A, Thomas A, Lavretsky H, et al. Frontal white matter biochemical abnormalities in late-life major depression detected with proton magnetic resonance spectroscopy. Am J Psychiatry, 2002, 159:630-636.
- [35] Gruber S, Frey R, Mlynárik V, et al. Quantification of metabolic differences in the frontal brain of depressive patients and controls obtained by 1H-MRS at 3 Tesla. Invest Radiol, 2003, 38:403-408.
- [36] Binesh N, Kumar A, Hwang S, et al. Neurochemistry of late-life major depression: a pilot two-dimensional MR spectroscopic study. J Magn Reson Imaging, 2004, 20:1039-1045.
- [37] Vythilingam M, Charles HC, Tupler LA, et al. Focal and lateralized subcortical abnormalities in unipolar major depressive disorder: an automated multivoxel proton magnetic resonance spectroscopy study. Biol Psychiatry, 2003, 54:744 -750.
- [38] Kusumakar V, MacMaster FP, Gates L, et al. Left medial temporal cytosolic choline in early onset depression. Can J Psychiatry, 2001, 46:959-964.
- [39] Gabbay V, Hess DA, Liu S, et al. Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: a proton MR spectroscopy study. Am J Psychiatry, 2007, 164:1881-1889.
- [40] Caetano SC, Fonseca M, Olvera RL, et al. Proton spectroscopy study of the left dorsolateral prefrontal cortex in pediatric depressed patients. Neurosci Lett, 2005, 384:321-326.
- [41] Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and gamma - aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry, 2007, 64:193 -200.
- [42] Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed, 2000, 13:129-153.
- [43] Etkin A, Wager TD. Functional neuroimaging of anxiety: a metaanalysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry, 2007, 164:1476-1488.
- [44] Costafreda SG, Chu C, Ashburner J, et al. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One, 2009, 4:E6353.
- [45] Gong Q, Wu Q, Scarpazza C, et al. Prognostic prediction of therapeutic response in depression using high - field MR imaging. Neuroimage, 2010, 55:1497-1503. (收稿日期:2011-04-19)

·小词典·

中英文对照名词词汇(四)

夫极化位移	depolarizing	shift(DS)
ARTICE	ucpotatizing	Sint(DO)

人类免疫缺陷病毒 human immunodeficiency virus(HIV)

三氯乙酸 trichloroacetic acid(TCA)

上皮膜抗原 epithelial membrane antigen(EMA)

射频 radiofrequency(RF)

神经传导速度 nerve conduction velocity(NCV)

神经功能缺损量表 Neurological Deficit Scale(NDS)

神经微丝蛋白 neurofilament protein(NF)

十二烷基磺酸钠-聚丙烯酰胺凝胶电泳

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

时间-密度曲线 time-density curve(TDC)

时间飞跃 time-of-flight(TOF)

视觉诱发电位 visual evoked potential(VEP)

视神经-脊髓型多发性硬化

opticospinal multiple sclerosis(OSMS)

视野 field of view(FOV)