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Table 1. Criteria for classifying pathogenic variants "
Evidence Category Instructions
Very PVSI1: null variant (nonsense, frameshift, canonical + 1 Beware of genes where LOF is not a known disease mechanism (eg., GFAP, MYH?7)
strong or 2 splice sites, initiation codon, single or multiexon, ~ Use caution interpreting LOF variants at the extreme 3” end of a gene
deletion) in a gene where LOF is a known mechanism  Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder
of disease of the protein intact
Use caution in the presence of multiple transcripts
Do not apply to variants that are near the 3" end of the gene and escape nonsense-mediated decay
Strong PS1: same amino acid change as a previously Beware of changes that impact splicing rather than at the amino acid/protein level
established pathogenic variant regardless of nucleotide Does not include the same variant being assessed because it is not yet pathogenic, and the rule is
change, for example: intended for variants with a different nucleotide change
Val = Leu caused by either G>C or G >T in the same
codon
PS2: de novo (both maternity and paternity confirmed) — Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo
in a patient with the disease and no family history transfer, and so on, can contribute to nonmaternity
Apply this rule as moderate or supporting if the variant is mosaic and its frequency in tissue is
consistent with the phenotype
PS3: well-established in vitro or in vivo functional Functional studies that have been validated and shown to be reproducible and robust in a clinical
studies supportive of a damaging effect on the gene or  diagnostic laboratory setting are considered the most well established
gene product Reduce the strength for assays that are not as well validated or linked to the phenotype
PS4: the prevalence of the variant in affected RR or OR, as obtained from case-control studies, is >5.000, and the confidence interval around the
individuals is significantly increased compared with estimate of RR or OR does not include 1.000. See the article for detailed guidance
the prevalence in controls In instances of very rare variants where case-control studies may not reach statistical significance,
the prior observation of the variant in multiple unrelated patients with the same phenotype, and its
absence in controls, may be used as moderate level of evidenc
Moderate ~ PM1: located in a mutational hot spot and/or critical Not meant for truncations; more clarification is needed for applying this rule
and well-established functional domain
(eg., active site of an enzyme) without benign variation
PM2: absent from controls (or at extremely low Population data for insertions/deletions may be poorly called by NGS
frequency if recessive) in Exome Sequencing Project, ~ Cannot assume longer indels would be detected by next-generation sequencing
1000 Genomes Project or Exome Aggregation Use a published control dataset if its size is at least 1000 individuals
Consortium Can not be applied for low-quality calls or non-covered regions
Must define the condition and inheritance pattern
PM3: for recessive disorders, detected in trans with a  This requires testing of parents (or offspring) to determine phase
pathogenic variant Invoke this rule as supporting if the phase is not established
Can upgrade if more than one proband is reported
PM4: protein length changes as a result of in-frame Applicable for in-frame insertions/deletions or stop-loss variants,
insertions/deletions in a nonrepeat region or but not frameshifts, nonsense and splice variants
stop-loss variants
PMS: novel missense change at an amino acid residue ~ For example: p.Argl 56His is pathogenic; now you observe p.Arg156Cys
where a different missense change determined to be Beware of changes that impact splicing rather than at the amino acid/protein level
pathogenic has been seen before Ensure pathogenicity of previously reported variant
Suggest changing "novel" to "different" because some variants that are not novel might require
assessment with this rule
PM6: assumed de novo, but without confirmation of
paternity and maternity
Supporting  PP1: cosegregation with disease in multiple affected May be used as stronger evidence with increasing segregation data

family members in a gene definitively known to cause
the disease

PP2: missense variant in a gene that has a low rate of
benign missense variation and in which missense
variants are a common mechanism of disease

PP3: multiple lines of computational evidence support
a deleterious effect on the gene or gene product
(conservation, evolutionary, splicing impact, etc.)
PP4: patient’s phenotype or family history is highly
specific for a disease with a single genetic etiology

PPS5: reputable source recently reports variant as
pathogenic, but the evidence is not available to the
laboratory to perform an independent evaluation

Because many in silico algorithms use the same or very similar input for their predictions, each
algorithm should not be counted as an independent criterion. PP3 can be used only once in any
evaluation of a variant all lines must agree

Not meant to be used for genetically heterogeneous conditions or conditions with unsolved etiology
Not typically applied for an analysis of incidental findings, but it could be applied for prior
observations

Only applicable when evidence is not available (eg., Sharing Clinical Reports Project)

PVS, pathogenic very strong, £ T % 5k ; PS, pathogenic strong , B P 3 ; PM, pathogenic moderate , B0 1 H 5 PP, pathogenic supporting, £
95 Pk s LOF, loss of function, HIEHL S ; GFAP, glial fibrillary acidic protein, & Jii £ £ f2 £ 2 14 ; MYH7, myosin heavy chain 7, JLER 2 4 &
#% 75 RR, relative risk , %5 fG 6 & s OR , odds ratio, FG{E H s NGS, next-generation sequencing, AL R

N5 %, B BUR M (pathogenic) . 7 & 2 /& M (likely
pathogenic) . & X £ ¥ (uncertain significance) . ¥ &
R P (likely benign) f7 & ¥ (benign) . (2) 1% # 4 & 2
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Criteria for classifying benign variants
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Table 2.

[4,24]

Evidence Category

Instructions

Stand-alone BAT: allele frequency is > 5% in Exome Sequencing Project,
1000 Genomes Project or Exome Aggregation Consortium

Strong BS1: allele frequency is greater than expected for disorder

BS2: observed in a healthy adult individual for a recessive
(homozygous), dominant (heterozygous) or X-linked (hemizygous)
disorder, with full penetrance expected at an early age

BS3: well-established in vitro or in vivo functional studies show no
damaging effect on protein function or splicing

BS4: lack of segregation in affected members of a family

BP1: missense variant in a gene for which primarily truncating
variants are known to cause disease

Supporting

BP2: observed in trans with a pathogenic variant for a fully
penetrant dominant gene/disorder or observed in cis with a
pathogenic variant in any inheritance pattern

BP3: in-frame insertions/deletions in a repetitive region without a
known function

BP4: multiple lines of computational evidence suggest no impact
on gene or gene product (conservation, evolutionary, splicing
impact, etc.)

BP35: variant found in a case with an alternate molecular basis
for disease

BP6: reputable source recently reports variant as benign, but the
evidence is not available to the laboratory to perform an
independent evaluation

BP7: a synonymous (silent) variant for which splicing prediction
algorithms predict no impact to the splice consensus sequence nor
the creation of a new splice site and the nucleotide is not highly
conserved

Populations might not have been screened or excluded for the phenotype

The presence of phenocopies for common phenotypes (ie., cancer, epilepsy) can mimic
lack of segregation among affected individuals. Also, families may have more than one
pathogenic variant contributing to an autosomal dominant disorder, further confounding
an apparent lack of segregation
Clarify the meaning of "primary"; suggest > 90%

Clarify that one should apply BP2 when the pathogenic variant is seen in the same gene
as the variant being evaluated and apply BPS when the pathogenic variant is in a
different gene

Because many in silico algorithms use the same or very similar input for their
predictions, each algorithm cannot be counted as an independent criterion. BP4 can
be used only once in any evaluation of a variant

All lines must agree

Clarify that one should apply BP2 when the pathogenic variant is seen in the same gene
as the variant being evaluated and apply BP5 when the pathogenic variant is in a
different gene

BA ,benign stand-alone, B YE5 37, ; BS, benign strong, K Y5 ; BP, benign supporting, K 1 3 £
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Table 3. Rules for combining criteria to classify
sequence variants

Classification Least evidence required

1 Very strong (PVS1)
And = 1 strong (PS1-4)
Or = 2 moderate (PM1-6)

Or = 1 moderate (PM1-6)
And 1 supporting (PP1-5)

Or = 2 supporting (PP1-5)
= 2 Strong (PS1-4)

1 Strong (PS1-4)

And = 3 moderate (PM1-6)

Or 2 moderate (PM1-6)

And = 2 supporting (PP1-5)
Or 1 moderate (PM1-6)

And = 4 supporting (PP1-5)
1 Very strong (PVS1)

And 1 moderate (PM1-6)
1 Strong (PS1-4)

And 1-2 moderate (PM1-6)
1 Strong (PS1-4)

And = 2 supporting (PP1-5)
= 3 Moderate (PM1-6)

2 Moderate (PM1-6)
And = 2 supporting (PP1-5)
1 Moderate (PM1-6)
And = 4 supporting (PP1-5)
Benign 1 Stand-alone (BA1)

= 2 Strong (BS1-4)

1 Strong (BS1-4)
And 1 supporting (BP1-7)
= 2 Supporting (BP1-7)

Pathogenic

Likely pathogenic

Likely benign

Uncertain significance Other criteria shown above are not met

The criteria for benign and pathogenic are
contradictory
PVS, pathogenic very strong., Zf £ 2 5% ; PS, pathogenic strong, £
95 1% 3% ; PM, pathogenic moderate, % ¥ H & 5 PP, pathogenic
supporting , B P 32 £ 5 BA, benign stand-alone, 17l 57 5 BS,
benign strong, R Y£5# ; BP, benign supporting, F % 3 %
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